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ABSTRACT 

Time-dependent reliability is the probability that a 

system will perform its intended function successfully 

for a specified time. Unless many and often unrealistic 

assumptions are made, the accuracy and efficiency of 

time-dependent reliability estimation are major issues 

which may limit its practicality. Monte Carlo 

simulation (MCS) is accurate and easy to use but it is 

computationally prohibitive for high dimensional, long 

duration, time-dependent (dynamic) systems with a low 

failure probability. This work addresses systems with 

random parameters excited by stochastic processes. 

Their response is calculated by time integrating a set of 

differential equations at discrete times. The limit state 

functions are therefore, explicit in time and depend on 

time-invariant random variables and time-dependent 

stochastic processes. We present an improved subset 

simulation with splitting approach by partitioning the 

original high dimensional random process into a series 

of correlated, short duration, low dimensional random 

processes. Subset simulation reduces the computational 

cost by introducing appropriate intermediate failure 

sub-domains to express the low failure probability as a 

product of larger conditional failure probabilities. 

Splitting is an efficient sampling method to estimate the 

conditional probabilities. The proposed subset 

simulation with splitting not only estimates the time-

dependent probability of failure at a given time but also 

estimates the cumulative distribution function up to that 

time with approximately the same cost. A vibration 

example involving a vehicle on a stochastic road 

demonstrates the advantages of the proposed approach. 

 

1. INTRODUCTION 

Reliability is an important engineering requirement 

for consistently delivering acceptable product 

performance through time. As time progresses, the 

product may fail due to time-dependent operating 

conditions and material properties, component 

degradation, etc. The reliability degradation with time 

may increase the lifecycle cost due to potential 

warranty costs, repairs and loss of market share.   

Reliability is the probability that the system will 

perform its intended function successfully for a 

specified interval of time, under stated operating and 

environmental conditions. It is therefore, related to 

product functionality over time which is determined by 

the so-called “hard” and “soft” failures [1]. In a hard 

failure the system loses functionality due to a complete 

breakdown of one or more of its components, while in a 

soft failure the system is functional but one or more 

performance measures are out of conformance.  The 

reliability associated with the hard failure is important 

for non-repairable systems where the replacement or 

repair of a failed component is not possible and the 

failed system is removed from the population. In 

contrast, repairable systems [2] consist of multiple 

components which can be repaired or replaced if failed 

keeping therefore, the original system in the population.  

In this research, we use time-dependent reliability 

concepts associated with the so-called first-passage of 

non-repairable systems. Among its many applications, 

the approach can be used to reduce the lifecycle cost [3, 

4] or to set a schedule for preventive condition-based 

maintenance [5]. 

The time-dependent probability of failure   (see Eq. 

5 for definition), also known as cumulative probability 

of failure [3, 6], is calculated by the following exact 

relation using the failure rate   
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where )0(i

fP   is the instantaneous probability of failure 

at the initial time. In the commonly used out-crossing 

rate approach, the failure rate   
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where fT  is the time to failure, is approximated by the 

up-crossing rate [7]  
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(see Equations 5 and 6 for notation) under the 

assumptions that 1) the probability of having two or 

more out-crossings in  ttt ,  is negligible compared 

to the probability of having exactly one out-crossing, 2) 

t  is sufficiently small, and 3) the out-crossings in 

 ttt ,  are statistically independent of the previous 

out-crossings in  t,0 . In this case, the number of up-

crossings  ,tN   for a threshold   is a Poisson 

process.  

The out-crossing rate approach was first introduced 

by Rice [8] followed by extensive studies [6, 9-13] 

under the assumption of the out-crossings being 

statistically independent and Poisson distributed.  

Hagen and Tvedt [7] suggested a parallel system 

reliability formulation to compute the out-crossing rate.  

It uses two successive time-invariant analyses based on 

FORM, and the binomial cumulative distribution to 

calculate the probability of the joint event in Eq. (3). 

This approach was later adopted in the PHI2 method 

[6]. Methods based on Poisson’s distribution and the 

PHI2 method compute an upper bound of the 

probability of failure of Eq. (3) [14].  A Monte-Carlo 

based set theory approach has been also proposed [1, 

15] using a similar approach with the PHI2 method. 

Analytical studies such as in [16, 17, 18] revealed that 

the PHI2 based approach lacks sufficient accuracy for 

non-monotonic problems such as vibratory systems. For 

this reason, analytical approaches were proposed in [16, 

19, 20] to accurately estimate the time-dependent 

probability of failure considering non-monotonic 

behavior. 

Although the out-crossing rate approach can easily 

estimate the time-dependent probability of failure, it has 

two potential limitations. First, its accuracy may be 

poor because of the Poisson process assumption of 

independent out-crossings and second, it may require a 

large computational effort. An analytical FORM-based 

estimation of the up-crossing rate (Eq. 3), with its own 

accuracy limitations, must be performed at the time 

instants required by the numerical evaluation of the 

integral in Eq. (1) (e.g. Gauss-Legendre integration 

points). If the probability of failure  TP ,0f  is 

calculated at different times T, the computational effort 

increases because the integration points change. This 

can increase the computational effort. The first 

limitation has been recently improved in [18] by 

considering the correlations between the limit-state 

function at two time instants. The method estimates the 

up-crossing rate  t  by solving an integral equation 

involving  t  and  1,tt , the joint probability of 

up-crossings in times t and 1t  [21].  

This paper presents a simulation-based method to 

estimate the time-dependent probability of failure at 

different time instances. Monte Carlo simulation (MCS) 

can handle high-dimensional problems, and general 

failure definitions allowing us to handle system 

reliability problems. However, it cannot estimate 

efficiently small probabilities because the number of 

samples, and hence the number of system analyses 

required to achieve a given accuracy, is inversely 

proportional to the failure probability. 

Importance sampling techniques [22] are 

commonly used to shift the underlying distribution 

towards the failure region in order to sample rare events 

more efficiently. They require however, a careful choice 

of the importance sampling density (ISD), which 

requires knowledge of the failure region. For low-

dimensional uncertain systems with relative simple 

failure regions, many important sampling methods have 

been developed (e.g. [22, 23]). However, the 

application of importance sampling to general dynamic 

reliability problems where the random excitation is 

represented by a large number of discrete random 

variables is still an active research area with limited 

practicality for such problems.  

A MCS approach was proposed in [24] to estimate 

the time-dependent failure rate over the product 

lifecycle. The efficiency of the method was further 

improved using an importance sampling method with a 

decorrelation length [25] in order to reduce the high 

dimensionality of the problem. 

Subset simulation [26, 27] has been recently 

developed as an efficient simulation method for 

computing small failure probabilities for general 

reliability problems. Its efficiency comes from 

introducing appropriate intermediate failure sub-

domains to express the low probability of failure as a 

product of larger conditional failure probabilities which 

are estimated with much less computational effort. In 

doing so, the probability of a rare event in the original 

probability space, is replaced by a sequence of 

probabilities of more frequent events in conditional 

probability spaces. Because it is very challenging to 

generate samples in the conditional spaces, subset 

simulation with Markov Chain Monte Carlo 

(SS/MCMC) [28, 29] and subset simulation with 

splitting (SS/S) [30-32] methods have been introduced.  
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 In this paper, we propose an improved subset 

simulation method with splitting by partitioning the 

original high dimensional random process into a series 

of correlated, short duration, low dimensional random 

processes. The proposed method, called subset 

simulation with splitting and partitioning in time 

(SS/SPT), not only estimates the time-dependent 

probability of failure at a given time (as the original 

SS/S method does) but also estimates the failure rate 

and the cumulative distribution function (CDF) up to 

that time with approximately the same cost. It can also 

handle dynamic systems with random parameters (e.g. 

random stiffness of a vehicle suspension system) which 

the original SS/S approach does not consider. 

Estimation of the CDF is very important for many 

practical problems such as preventive maintenance 

using reliability principles, design for lifecycle cost, etc. 

Also, metrics such as the failure rate, remaining life, 

and mean-time-to-failure (MTTF) which are functions 

of the CDF of time to failure are significant for 

describing the system reliability and performance 

characteristics.  

The paper is organized as follows. Section 2 

defines the dynamic systems we consider and provides 

a brief introduction of the problem and notation. 

Section 3 introduces the subset simulation approach and 

the existing MCMC and splitting sampling schemes. 

Our proposed SS/STP method is presented in Section 4, 

including accuracy bounds and computational effort 

estimation. Section 5 uses an example of a quarter 

vehicle with uncertain parameters on stochastic terrain 

to demonstrate the characteristics and advantages of the 

proposed method.  Finally, Section 6 summarizes, 

concludes and presents future work. 

 

2. TIME DEPENDENT RELIABILITY  

EVALUATION 

We consider the time-dependent reliability of 

dynamic (rigid-body or vibratory) systems whose 

equations of motion are usually discretized in time and 

presented in a state-space form. The discretized 

equations are time integrated using for example, a 

Runge-Kutta method or Newmark-beta method [33]. 

They are expressed as 

                   tttftt ,,, UYXX  ,                 (4) 

where   pt X is the vector of uncertain states 

 txs , ps ,,2,1  at time t, t  is the integration time 

step, qY  is the time-independent vector of random 

variables (e.g. system parameters s

s

q
Y and 

excitation parameters e

e

q
Y ), and 

    rtt  ,YUU  is the time-dependent vector of 

excitation random processes (e.g. road elevation at a 

vehicle tire location through time). Both  tX  and  tU  

are implicit functions of Y . The trajectories 

    Ttt ,0,  XX  of all states (sample functions of 

corresponding random processes) are calculated at 

discrete time instances jtt  , step,...,1,0 Nj   where 

stepN  is the number of time integration steps over the 

period  T,0 . For illustration, if 1p , 2q  and 

1r , Eq. (4) becomes 

      ttuyytxfttx ,,,,) 2111   where the single state 

1x  at time tt   is a function of the state at time t, 1y  

and 2y  are the realizations of the two random variables 

1Y  and 2Y , and  tu  is the value of a sample function of 

the random process  tU  at time t. Time integration of 

Eq. (4) provides the system response 

    Tttxx ,0,11  .  

The computational effort to solve for the system 

states  tt X  at time tt   as a function of the 

states  tX  at time t, is considered one function 

evaluation. It is important to note that the system states 

 tt X  are a function of the states  tX which are in 

turn a function of the states  tt X . Thus, in order to 

calculate  tX , we need the solution at all previous 

times. For this reason, counting the number of sample 

function (or trajectory) evaluations instead of the 

number of function evaluations is preferable for 

dynamic systems. This is different from problems with 

explicit in time limit states where a simple function 

evaluation can be performed at any time t.   

Our goal is to calculate the time-dependent 

probability of failure 

        t,:,0,0 SttgTtPTPf  X ,       (5) 

where pg :  is a function that maps  tX  to a 

response of interest and tS  is a given threshold value. 

Because of the time-dependent uncertain states in  tX , 

     t, SttgtG  X  is a random process which can be 

viewed as a collection of random variables at different 

time instances t. Since we consider a first excursion 

failure problem in Eq. (5), the failure domain, as well as 

an event therein, can be defined as   

 
  







 


t

,0
,max SttgF

Tt
X .              (6) 

The system operates properly and is called safe 

if     TtSttg ,0,, t X . The system is considered 

failed if      t,:,0 SttgTt  X . The equation 

   0, t  Sttg X  is the time-dependent limit state 

surface (LSS).  

We consider a non-repairable system where if 

   t, Sttg jj X  for  Tt j ,0 , the system fails and is 

removed from the population for jtt  . In this case, 

Eq. (5) can be approximately rewritten as 
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where r is the number of load random variables 

generated from the random process 

     t, SttgtG  X at discrete times jt , rj ,,2,1  . 

For convenience, if stepN  is the number of time 

integration steps, we let stepNr  . If the time interval 

 T,0  is discretized with a uniform time step t , we 

have 
t

TN


step . According to Eq. (7), the time-

dependent reliability evaluation can be transformed into 

a time-independent system reliability evaluation 

involving stepNr   correlated random variables. If t  

is small, the time-independent system reliability 

problem is of very high dimension since stepN  is 

inversely proportional to t .     

 

3. SUBSET SIMULATION 

This section provides a brief introduction to subset 

simulation and the existing MCMC and splitting 

sampling schemes. Given the failure event F of Eq. (6), 

a nested sequence of m failure domains is formed using 

a set of increasing threshold levels 

tt

1

t

1

t SSSS m   . The failure domains iF  for 

mi ,,2,1   are defined as  

        
 

  











i

Tt

i SttgF t
,0

,max X ,                  (8) 

where 

          FFFF m  21 ,              (9) 

and  

         
l

i

il FF
1

 , ml ,,2,1  .                   (10) 

Figure 1 shows pictorially the m failure domains 
iF , mi ,,2,1  for a hypothetical case with two 

random variables.  

Using the definition of conditional probability, we 

have [31] 

 

 

Figure 1. Pictorial representation of failure 

subdomains 
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where the conditional probability  1ii FFP , 

mi ,,2  is denoted by iPf  and   1FP  is denoted by 

1

fP . Eq. (11) indicates that the probability of failure fP   

can be expressed as the product of a sequence of larger 

conditional probabilities iPf  and 1

fP . Even though  fP  

is very small, the conditional probabilities can be 

sufficiently large to be evaluated accurately by MCS 

using a much smaller number of samples for the 

intermediate failure events iF , mi ,,2 . For 

example, if the probability of failure for the rare event 

F is 6

f 10P , the failure domains iF , 6,,2i  can 

be defined so that the corresponding failure events have 

probabilities 1.01

f P  and conditional probabilities 

1.0f 
iP for 6,,2i  such that 6

6

1

ff 10




i

iPP . 

… 

1y

2y mF

2F

1F
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The much larger probabilities iP can be efficiently 

evaluated using MCS for a given accuracy. The 

probability calculation of a rare event is therefore, 

replaced by a sequence of more frequent events in the 

conditional probability spaces.  

To evaluate the conditional probabilities in Eq. 

(11), a sampling scheme is needed to produce sample 

functions, which satisfy the conditional events. Two 

such sampling schemes are Markov Chain Monte Carlo 

(MCMC) and splitting. Their difference is on how they 

generate offsprings from appropriate parent samples. A 

brief introduction to MCMC and splitting is provided 

next. 

   

3.1 Sampling with MCMC and splitting  

Subset simulation requires the conditional 

probabilities  1 iii FFPP  for mi ,,2,1   to 

calculate the overall small probability of failure fP as 

the product of the larger conditional probabilities 
iP and 1P . Monte Carlo simulation can estimate the 

conditional probabilities as long as we can generate 

conditional samples. For example, to calculate 

 1ii FFP we must generate sample functions 

  ttg ,X  which satisfy the failure condition 

 
  









 



 1

t
,0

1 ,max i

Tt

i SttgF X . For that, Markov Chain 

Monte Carlo (MCMC) or splitting (S) sampling 

schemes can be used. 

To generate MCMC sample functions, we perturb a 

“parent” sample function   ttg ,P X  which satisfies the 

condition of the 1iF  domain (thick line in Figure 2) to 

generate an offspring   ttg ,O X  (thin lines in Figure 

2). However, some of the offsprings may not belong to 

the 1iF   domain (thin solid line in Figure 2) and are 

therefore, rejected. As a result, the MCMC sampling 

process can be inefficient. More details are provided in 

[26, 30, 31]. 

Generating offsprings using splitting does not have 

the drawback of MCMC. Figure 3(a) highlights the 

main idea. Considering that the “parent” sample 

function   ttg ,P X  belongs to the 1iF   domain, we 

can partition it into two partial signals 

   ],,[ 1passPP ttttgg 
X  and   ttgg ,[ PP X , 

]1pass
tt  , where 1pass

t  is the time when   ttg ,P X  

crosses the threshold 1

t

iS  and ttt  11 passpass
is the 

time instant right before the first passage time 1pass
t (see 

Figure 3a), and record the system states 

 tt  11 passpass
XS . We assume 1) that the sample 

functions of the excitation random processes  tU  can 

be partitioned similarly into   ],[ 1passP ttt 
UU  and 

  ],[ 1passP ttt 
UU  and 2) that the new sample 

functions   ],[ 1passO ttt 
UU  of the excitation can be 

generated after 1pass
t . Then, using the states 1pass

S  and 

the excitation 

OU , we generate an offspring  

OP , gg , 

where 

     ],,,[ 1passOO tttttgg  
UX .  

This process guarantees that the offspring  

OP , gg  

belongs to the 1iF   domain.  

 

Figure 2. Accepted and rejected sample functions 

generated by MCMC 

 

 

(a) 

 

(b) 

Figure 3. Sample functions generated by splitting  
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If the time step t  is small enough, the difference 

among 1

Opass , 1

Ppass , and 1pass is very small and the 

splitting point 1pass ( Figure 3a) can be replaced 

with
11

P passpass  (Figures 3a and 3b). Then, the 

generated offspring is always accepted without a path 

dependency issue. However if the time step t  is not 

small enough, 1

Opass , 1

Ppass , and/or 1pass may be quite 

off from the threshold 1

t

iS  and the offspring will have 

a path dependency issue if the splitting starts at 1

Ppass .  

To avoid path dependency and improve accuracy, we 

perform splitting at 1pass  similarly to [32]. This may 

compromise efficiency because of a repeated generation 

of response realizations until the generated offspring 

path has a first passage point in the time period of 

interest. 

 

4. PROPOSED APPROACH 

Subset simulation with splitting (SS/S) or subset 

simulation with MCMC (SS/MCMC), are promising 

approaches in estimating the reliability of dynamic 

systems with low probability of failure. Even though 

SS/S is more efficient than SS/MCMC, its 

computational efficiency decreases rapidly when 

several probabilities of failure (e.g.,  1,0 TPf ,  2,0 TPf  

and  3,0 TPf  with 321 TTT  ) are needed to build the 

CDF, because each probability of failure is estimated 

independently starting from 0t .  

To address this issue for non-repairable systems, 

we propose a subset simulation method with splitting 

and partitioned time (SS/SPT). The method partitions 

 T,0  into several time intervals and uses a modified 

SS/S approach sequentially using the survived (not 

failed) sample trajectories from the previous time 

interval to directly obtain the failure rate in the current 

time interval, and then calculate the cumulative 

probability of failure. A nested sequence of m failure 

regions FFFF m  21  is formed for different 

threshold levels tt

2

t

1

t SSSS m   . The random 

processes within different time intervals are correlated 

because if a failure occurs outside a time interval, the 

failed system is disposed at that time.  

The time of interest  T,0  is discretized at 

instances  TTTTT Nn 
interval210   so that 

  TNTTT
N

n

nn  


 interval

1

1

interval

 with 00 T , 
ervalNT

int
T  

and 
intervalN

TT  . A series of intervalN  

correlated/conditional failure regions are then formed 

defined by the following events  

     
 

  








 
 

1t
,

c ,max
1

n
TTt

n FSttgF
nn

X ,         (12a) 

where 

        
 

  











 t
,0

1 ,max
1

SttgF
nTt

n X ,                 (12b) 

and 

            
 

  











t
,0

,max SttgF
nTt

n X                  (12c) 

for interval,,2,1 Nn  .  

The dependencies in the conditional failure events 

nFc in the time direction are simply enforced during 

simulation by using only the surviving (not failed) 

sample functions among all sample functions in  1,0 nT  

in the subsequent time period  nn TT ,1 . This allows us 

to partition time T in shorter time intervals 

  interval1 ,,2,1,, NnTT nn   and use the subset 

simulation with splitting in each of the time intervals to 

calculate the conditional probabilities 

    nn FPP ccf  .                    (13) 

For the time interval  nn TT ,1 , we use i

nFc  instead 

of iF  to represent the thi subset event in the threshold 

direction 

       
 

  








 
 

1t
,

c ,max
1

n

i

TTt

i

n FSttgF
nn

X ,         (14) 

where nmi ,,2,1  , and nm is the number of 

intermediate thresholds for the n
th

 time interval 

 nn TT ,1 . The corresponding probability is denoted 

by  i

n

i

n FPP ccf  . The probability  nn FPP ccf   is 

calculated using Eq. (11), where 
nm

i

i

nn FF
1

cc



 .   

The probability nPcf can be also used to calculate 

the failure rate  

      
n

n
n T

P


 cf                          (15) 

in the time period  nn TT ,1  where 1 nnn TTT , 

because it represents the probability of failure in the 

time period  nn TT ,1 under the condition that the 

system is safe in  1,0 nT .  

Because  nnnn FFFF c11   , we can use the 

modified SS/S approach to calculate nPcf in 

 nn TT ,1 and the probabilities of failure  

           nnnnn PPPFPP cff1ff 1                  (16) 
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at all instances nT , interval,,2,1 Tn   with almost the 

same computational effort the SS/S approach requires 

to calculate the probability of failure at the final time T. 

Details on the computational effort are provided in 

Section 4.1.  

Figure 4 highlights the basic idea of the SS/SPT 

method. At most N trajectories are simulated in  T,0 . 

The simulation is first carried out in  1,0 T . For 

illustration purposes, Figure 4 shows only two 

trajectories. Because both trajectories cross the 

intermediate threshold 1

tS , they are used to generate 

offsprings (dotted lines) in  1,0 T . The offsprings along 

with the parent trajectories, are used to calculate the 

probability of crossing the next intermediate threshold 
2

tS . The system states  tX  at points A and B are 

recorded in order to continue if necessary, the 

simulation of the particular trajectory for the next time 

interval  21,TT . The process is repeated for all 

intermediate thresholds in  1,0 T . All offsprings are 

generated only within the current time interval. 

Because trajectory 1 crosses the overall threshold 

tS in  1,0 T , it is considered failed and removed from 

the population. Thus, we do not continue its simulation 

in  21,TT . In contrast, because trajectory 2 did not cross 

tS in  1,0 T , we continue its simulation in  21,TT  using 

the states  tX  at point B. In  21,TT , the  second 

trajectory crosses both 1

tS  and 2

tS , and can produce 

offsprings as shown in Figure 4. The process of 

continuing the simulation of only the survived parent 

trajectories, which can subsequently create offsprings, 

is carried out for all time intervals.  

 
Figure 4. Schematic of basic features of the SS/SPT 

method 

A step-by-step description of the proposed SS/SPT 

algorithm is given below followed by the developed 

SS/SPT algorithm. 

Step 1. Initialize algorithmic parameters. 

Step 2. Generate snNN  replications of the 

system random parameters. 

For each time interval, Steps 3 through 8 are 

performed: 

Step 3. Generate a state trajectory for each system 

parameter replication for a random excitation 

trajectory. 

Step 4. Determine the first threshold level for failure 

event 1F (see Equation 12c), and calculate the 

corresponding probability of failure  11

f FPP n  . 

Step 5. Use splitting to generate offspring trajectories 

from randomly selected “parent” trajectories for failure 

event iF . 

Step 6. Determine the first threshold level of failure 

event iF 1 and calculate the corresponding probability 

of failure  ii

n FPP   11

f . 

Step 7. Calculate the failure rate and cumulative 

probability of failure. 

Step 8. Reset for next time interval.  

 

A pseudo code description of the proposed SS/SPT 

algorithm is provided below with details for all the 

above steps. 

Step 1: Initialize algorithmic parameters. 

Specify the guessed probability of failure guess

fnP  

( fnP  in Equation 16). 

Specify the guessed expected conditional 

probability guess

np  for each subset simulation level.  

Determine the expected conditional probability p  

for each subset simulation level  

  guess

fn

guess

n Ppp ,max . 

Specify the number of the initial independent 

parent response trajectories (sample functions) snN . 

snNN  ; 

Specify the life span of interest T . 

Set 00 T . 

Specify a uniform time interval intervalT to partition 

T .  

Calculate 







interval

interval ceil
T

TN  and reset 

intervalintervalTNT  . 

Specify the initial values of excitation  k

0U  for 

sn,...,2,1 Nk  . 

Specify the initial values of the states  k

0X  for 

sn,...,2,1 Nk  .  

Set 00f P  by assuming that the system has a very 

small failure probability at the  

Trajectory 2 

Offspring 

B 

0 

St
m=St 

A 

St 

St
2 

St
1 

T1 T2 T 

Trajectory 1 
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initial time 00 T . 

Step 2: Generate snNN  replications of the system 

random parameters.  

For Nk :1  

Generate independent random system 

parameters  k

sY .  

End 

For interval:1 Nn   

Step 3:  Generate one state trajectory for each   

system parameter replication for a random  

excitation trajectory. 

For Nk :1  

For time period  nn TT ,1 generate 

independent random excitation parameters 
)(

e

k
Y  and the corresponding excitation 

trajectory  tk )(
U ; set  )(

e

)(

s

)( ; kkk
YYY  ; 

solve for state trajectory (sample function) 

 tk )(
X  using Equation (4) with initial 

conditions  k

0U  and  k

0X . Calculate the 

corresponding response   ttg k ,)(
X . 

End 

Let sN  be the number of trajectories that 

satisfy
 

  











NkSttg k

TTt nn

,...,2,1,,max t

)(

,1

X . 

Denote and record the corresponding 

excitation, state, and system parameter vectors 

by
  tks

sU  , 
  tks

sX  and 
 s

ss

k
Y  respectively, 

for ss ,,2,1 Nk  .  

Step 4: Determine the first threshold level for failure 

event 1F (see Eq. 12c), and calculate the corresponding 

probability of failure  11

f FPP n  . 

0i ; 

Let iS 1

t be the   1001  p  percentile of  

 
  












Nkttg k

TTt nn

,...,2,1,,max )(

,1

X . 

Record the time coordinates and state values 

of the trajectories (sample functions)  at the 

first-passage points over the intermediate 

threshold    ik Sttg  1

t

)( ,X  and record the 

corresponding system parameters. Instead of 

using the approximation NpN f , 

calculate fN  by counting the exact number of 

all trajectories satisfying    ik Sttg  1

t

)( ,X . 

Denote the time coordinates, state values, and 

the corresponding system parameters right 

before the first passage times by 

     ff

)(

passspasspass
,...,2,1,,, f

1
f

1
f

1 Nkt
kkk

 YS  and 

record the trajectories 
  ff ,...,2,1,f Nk
k

X  

reaching the threshold.  

Calculate 
N

N
P i

n
f1

 f  . 

While t

1

t SS i   

1 ii ; 

Step 5: Use splitting to generate offspring  

trajectories from randomly selected “parent”  

trajectories for failure event iF . 

For NNk :)1( f   

Randomly select values for the tuple 

 s,, YSt   

from 
     ff

)(

passspasspass
,...,2,1,,, f

1
f

1
f

1 Nkt
kkk

YS  

with a uniform probability of f1 N .  

Generate     tttttk  ,,)(
X  

starting from S using sY and the 

newly generated excitation  tU  

according to Equation (4). 

If    iSttttg  1

t,X , redo this 

step for the same k 

until    iSttttg  1

t,X . For 

the first passage, denote the time 

coordinate, state value, and the 

corresponding system parameters by 
    )(

passspasspass 111 ,, kkkt YS   (noting that 

ttt k )(

pass1  and s

)(

pass1 YY k ). Record 

this one time step trajectory as  k
X . 

Continue the trajectory  k
X  by 

generating       n

k

pass

k Tttt ,, 1X  

starting from )(

pass1

k
S using )(

pass1

k
Y and 

the newly generated excitation   tk
U  

according to Equation (4). 

End 

Step 6: Determine the first threshold level of  

failure event iF 1 and calculate the corresponding  

probability of failure  ii

n FPP   11

f . 

Let iS 1

t be the   1001  p  percentile of  
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Nkttg k

TTt nn

,...,2,1,,max )(

,1

X . 

Record the system parameters, time 

coordinates and state values of the 

trajectories exactly at the first-passage 

over the intermediate 

threshold    ik Sttg  1

t

)( ,X  . Instead of 

using the approximation NpN f , 

calculate fN by counting the exact number 

of all trajectories satisfying 

  ttg k ,)(
X

iS  1

t . Denote the first 

passage time coordinates, state values and 

the corresponding system parameters by 
     ff

)(

passspasspass
,...,2,1,,, f

1
f

1
f

1 Nkt
kkk

YS  and 

record the trajectories 
  ff ,...,2,1,f Nk
k

X  reaching the 

threshold.  

Calculate 
N

N
P i

n
f1

 f   

End 

1 ii  

Step 7: Calculate the failure rate and cumulative  

probability of failure. 

Let fN  be the number of trajectories that 

satisfy  

 
  












NkSttg k

TTt nn

,...,2,1,,max t

)(

,1

X .  

N
N

Pm

n
f

 f  ; 





m

i

i

nn PP
1

 fcf . 

interval

cf

T

P n
n  ; 

  nnnn PPPP cff1ff 1  ; 

Step 8: Reset for next time interval. 

sNN  ; 

   n

kk Ts0 UU  ,
    n

kk Ts0 XX   and 
   kk

sss YY   

for Nk ,,2,1  ; 

Revise the expected conditional probability p  

for each subset simulation level  

 guess

fn

guess

n Ppp ,max   

End 

 

  

4.1 Computational Effort 

At the thn  time interval, we simulate nNs  parent 

trajectories within  nn TT ,1  by solving the dynamic 

Equations (4). Using a constant time integration 

step t , the number of function evaluations (see 

paragraph above Equation 5 for definition) per 

trajectory within  nn TT ,1  is 
tN

T

t

TT nn






 

interval

1  , 

where intervalN  is the number of time intervals we 

partition the total time  T,0  into. This results  in an 

upper limit 
tN

T
N n

interval

s  of function evaluations for 

the parent trajectories. 

At the thi  threshold of the thn time interval, we 

simulate 

          nnnnn

i

nn NpNpNNN sssfs 1    (17) 

offspring trajectories  in  nn TT ,1  from t  to nT  by 

solving the dynamic Equations (4) where  nn TTt ,1 is 

the time a trajectory crosses the thi  threshold. In 

Equation (17), i

nNf  is the number of the sample 

functions among nNs  which cross the thi  threshold and 

np  is the desired conditional probability for each 

subset level. Based on the definition of t , it is 

reasonable to assume 
2

1 nn TT
t


  . The upper limit of 

function evaluations per offspring trajectory at the thi  

threshold of the thn time interval is therefore, equal to 

tN

T

t

TT

t

tT nnn











 

interval

1

22
. If nm  is the number of 

thresholds where offsprings are generated, we need up 

to    1
2

1
interval

s 


 nnn m
tN

T
Np  function evaluations 

for all  1nm  thresholds.  

 The upper limit of the total number of function 

evaluations for the thn  time interval  nn TT ,1  is thus 

equal to    1
2

1
interval

s

interval

s 





nnnn m
tN

T
Np

tN

T
N  

or 

 
  

n
nn N

tN

Tmp
s

interval2

11
1









 
 .            (18) 

The number of function evaluations in relation (18) 

is approximately the same for all intervalN time intervals, 

yielding the following upper bound for the overall 

number of function evaluations 
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n

nn

n
nn

N
t

Tmp

N
tN

Tmp
N

s

s

interval

interval

2

11
1

2

11
1









 










 


.   (19) 

Considering that 
t

T


 represents the number of 

function evaluations to generate a single trajectory 

(sample function) of the output random process from 0 

to T, the upper limit of an equivalent number of 

simulated sample functions is 

           
  

n
nn N

mp
s

2

11
1 







 
 .            (20) 

Relation (18) provides the approximate number of 

function evaluations for the subset simulation with 

splitting (SS/S) method if 1interval N . This results in 

the same computational effort with the proposed 

SS/SPT approach (Equation 20) in terms of equivalent 

number of simulated sample functions. However, the 

SS/SPT method calculates the entire CDF and the 

failure rate as a function of time while the SS/S method 

simply provides the probability of failure at the final 

time T. This can be a significant advantage of the 

proposed SS/SPT over the direct SS/S.  

 

4.2 Estimation of Number of Parent Trajectories 

and Intermediate Thresholds 

This section estimates the bounds of the coefficient 

of variation (C.O.V.) 
nPcf

 of the probability estimate 

nPcf
ˆ  of nPcf (see Equations 13 and 12) for the time 

interval   interval1 ,,2,1,, NnTT nn   where 00 T . The 

bounds are used to estimate the appropriate number of 

parent trajectories snN , the expected conditional 

probability of failure np  for each subset level, and the 

number of intermediate thresholds nm for each time 

interval for a given C.O.V.  

In subset simulation, the C.O.V. 
nPcf

  of nPcf is 

approximated by  

              



n

i
nn

m

i
PP

1

22 )()(
cfcf

 ,                      (21) 

where i
nPcf

  is the C.O.V. of the probability estimate 

i

nPcf
ˆ  at the thi threshold. According to [31], i

nPcf

 is 

given as 

              i

ni

n

i

n

i

n

P NP

P
i

n

 


 1
1

cf

cf

cf

.            (22) 

In our proposed SS/SPT approach, 01 n  and i

n  

is a constant provided by 

              

















i

n

i

n

i

ni

n
NN

N
E

f

0              (23) 

for nmi ,,2 , where i

nN  is the total number of 

sample functions for failure domain 1iF  and i

nNf  is 

the number of sample functions among i

nN  which are 

also used in the failure domain iF . For simplicity, we 

assume that each subset level has the same expected 

conditional probability n

i

n pP cf . We also assume that 

the total number of sample functions i

nN  is the same 

for each subset level i and equal to nNs (i.e., n

i

n NN s ) 

which must be estimated. This assumption results in the 

same number of conditional failure samples 

nn

i

n NpN sf   for each subset level. Therefore, the 

expected number of offspring trajectories, generated 

from the i

nNf  sample functions, and reaching 

the thi threshold is 

       nn

i

nn

i

n NpNNN sfso 1 ,           (24) 

and Equation (23) becomes  

        
nn

i

n
pp

E


















1

1

1

1
0              (25) 

for nmi ,...,2  

Combining Equations (21), (22) and (25) and using 

the assumption n

i

n pP cf , the C.O.V. 
nPcf

 of the 

probability estimate nPcf
ˆ  for the n

th
 time interval, has 

the following bounds                             

   



















n

n

n m

i n

nnP

m

i

n
p2

222

1

2

1

1
1)()()()(

cf
 ,  (26) 

where 

               
nn

n
n

Np

p

s

1
 .                          (27) 

Substitution of Equation (27) in Equation (26) 

yields                             

   
nn

n

n

n
nP

nn

n
n

Np

p

p

p
m

Np

p
m

n

s

2

s

1

1

2
11

1
cf

















 .     (28) 

 

Based on Equation (11) and the assumption 

n

i

n pP cf , the number of threshold levels nm  for the n
th

 

time interval in Eq. (28) can be calculated from 

     n

nn
m

n

m

i

n

m

i

i

nn ppPP  
 11

cfcf  

or 

 )ln()ln( cf nnn pmP   














n

n

n
p

P
m

ln

ln
ceil

cf
.     (29) 

Equations (28) and (29) are used to estimate the 

bounds of 
nPcf

 based on estimates of nNs  and nPcf , and 
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a predetermined value of np . Alternatively for a given 

nPcf
 , we can estimate the bounds of nNs .  

As an example, we assume that the time internal of 

interest is    sec352,0,0 T  and the estimated 

probability of failure )(f nn FPP   (see Eq. 12c) at T = 

352 sec is 2.0)352,0(f nP . If we partition the interval 

   sec352,0,0 T  at every 8 seconds (i.e., 

44
8

352
interval N  time intervals), nPcf  is estimated by 

004545.0
44

2.0

interval

cf 
N

P
P

fn

n . If we also assume 

2.0np , Equation (29) estimates the number of subset 

levels 4
)2.0ln(

)004545.0ln(
ceil

ln

ln
ceil 
























n

cfn

n
p

P
m  for 

each time interval. Then Equation (28) can provide the 

bounds of nNs  for an assumed C.O.V. of 

07.0
cf


nP as 

 
22 )(

1

1

2
11

)(

1

cfncfn Pn

n

n

n
nsn

Pn

n
n

p

p

p

p
mN

p

p
m



















 or 

 
22 07.02.0

2.01

2.01

2.02
141

07.02.0

2.01
4





















snN 

63263265  snN . Choosing 5000snN , the relation 

(20) gives the approximate number of 

  
5000

2

)14()2.01(
1

2

11
1 sn 







 








 
 N

mp nn  

000,11 simulated trajectories. 

 

5. VEHICLE VIBRATION EXAMPLE 

The linear representation of a quarter vehicle in 

Fig. 5 is employed to illustrate the proposed SS/SPT 

method. The vehicle travels over a stochastic terrain at 

20 miles per hour (mph). The system has two random 

parameters; the damping coefficient 
sb  and the 

stiffness coefficient sk . Both are normally distributed 

with  N/m/s1400,7000~ 2

s Nb  and ~sk  

 24000,40000N N/m . The sprung and unsprung 

masses sm  and um of the suspension, the tire stiffness 

coefficient tk  and the tire damping coefficient tb  are 

deterministic with kg100s m , kg100u m , 40t k  

N/m104   and N/m1040 4

t k , 3

t 1040b  

N/m/s . The vehicle is travelling over a stochastic 

terrain which provides excitation. The elevation  tu of 

the terrain is a random process. 

The state-space approach is used to determine the 

vertical acceleration     txttg s, X  of the sprung 

mass, in g’s. Failure occurs if the magnitude of the 

vertical acceleration exceeds a threshold tS  (i.e., 

   t, Sttg X ). 

ms

mu

ks bs

kt bt

Xs

Xu

u(t)

 
Figure 5. Quarter vehicle model 

 

A third order, autoregressive time series model 

AR(3) is used to characterize the road excitation 

process [25]. Time series modeling can characterize 

both stationary and non-stationary processes [34, 35]. 

The road model for this example is expressed as 

 2

321 5132.0,01954.02976.02456.1 jjjjj uuuu  

 where the subscript j indicates the time step of the 

discretized time,  205132,0j  is Gaussian white noise 

with a standard deviation of 0.5132. The coefficients 

1.2456, -0.2976, and -0.1954 are the three estimated 

feedback parameters. of the AR(3) model. 

The following two differential equations comprise 

the equations of motion  

                   

    ubukxkxkkxbxbbxm 
ttssustssustuu                                             

    0ussussss  xxkxxbxm   

 

which are transformed to state-space form and 

integrated in time to obtain the response (  txs  and 

 txu ) which is then used to determine the vertical 

acceleration  txs
  of the sprung mass. 

The time step for the numerical integration of the 

above equations is equal to 01.0t  seconds. The 

threshold for failure is 5.3t S  g’s. We calculated the 

failure rate and the CDF in the time period  352,0  

seconds. The latter was partitioned every 2 seconds 

( 176interval N ), 4 seconds ( 88interval N ) and 8 seconds 

( 44interval N ). For the 2 second partitioning for 

example, the probability of failure is calculated at 2, 4, 

8, … , 352 seconds. 

Following the process in the last paragraph of 

Section 4.2, we can estimate the number of parent 
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trajectories nNs  , the number of intermediate thresholds 

(or subset levels) nm  and an approximate number of 

simulated trajectories for a desired C.O.V. of 

07.0
cf


nP and expected conditional probability 

2.0np . If the time [0, 352] seconds is partitioned 

with an 8 sec interval, we obtain 81634081 s  nN , 

5nm and an approximate number of 15,000 simulated 

trajectories. For partitioning with 4 or 2 seconds, we get 

63263265 s  nN , 4nm and an approximate 

number of 11,000 simulated trajectories. Based on these 

estimates, we selected 000,5s nN .  

Figure 6 and Table 1 show the calculated failure 

rate and CDF with a step of 2 seconds. Four different 

runs were performed (red dotted lines) in order to 

demonstrate the expected variability. Table 1 provides 

detailed results for the four independent runs, their 

mean and the C.O.V. It also shows the MCS estimates. 

The black dotted line represents the average of the four 

runs. The estimated probabilities from MCS with 10
6  

trajectories (blue solid line) are used as a baseline. 

Figure 6 shows that the average failure rate and CDF of 

the four SS/SPT runs is close to the MCS estimates. 

Figures 7 and 8, and the corresponding Tables 2 and 3, 

show the calculated failure rate and CDF with a step of 

4 and 8 seconds, respectively. 

Figures 6a, 7a and 8a show that the estimated 

failure rate  t  oscillates around its mean throughout 

time. The variability is due to the low value of  t  and 

the relatively low number of simulated trajectories. 

However, the estimation is unbiased since the 

oscillations are about the mean value. The unbiased 

estimation of the SS/SPT algorithm is also supported by 

the estimated CDF from the four runs in Figures 6b, 7b 

and 8b which show variation around their mean. The 

CDFs do not exhibit an oscillation because the number 

of parent sample functions nNs  was estimated based on 

the low C.O.V. of 0.07 for each time interval. The 

probability variation is expected to be small because the 

increase in the probability of failure nPcf  at each time 

interval is small (approximately equal to 

001136.0
176

2.0
  for the 2 second interval case) and its 

COV 
nPcf

 is chosen small. This is an advantage of the 

proposed SS/SPT approach over the direct SS/S 

approach where the estimated CDF can exhibit large 

oscillations. 

Figure 9 shows the COV of the estimated failure 

rate  t  and probability of failure fP .  We observe 

that the COV of  t  decreases on average, for 

increasing time interval (0.3364 for 2 sec, to 0.2459 for 

4 sec, to 0.1876 for 8 sec). This is because the error of 

probability of failure estimation for any MCS-based 

method reduces as the probability of failure increases. 

As we increase the time interval in the proposed 

SS/SPT method, the probability of failure contribution 

from the larger time interval to the overall fP  

increases, reducing therefore the estimation error.  

The same observation holds for the C.O.V. of 

CDF. Figure 9b shows that the C.O.V. decreases on 

average, for increasing time interval (0.048 for 2 sec, to 

0.0314 for 4 sec, to 0.0286 for 8 sec). The average 

C.O.V. of the CDF is much smaller than the C.O.V. of 

 t  due to the higher value of fP  compared to the 

value of  t . Furthermore, the C.O.V. of the CDF 

decreases rapidly in the early period and exhibits less 

variation at later times because the CDF value increases 

with increasing time.  

Based on the above discussion, a relatively large 

time interval (e.g. 8 versus 2 seconds for this example) 

can be used in order to reduce the failure rate and CDF 

variation.  
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(b) 

Figure 6. Failure rate (a) and probability of failure 

(b) from SS/SPT method calculated at 2 sec intervals 
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(b) 

Figure 7. Failure rate (a) and probability of failure (b) 

from SS/SPT method calculated at 4 sec intervals 
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(b) 

Figure 8. Failure rate (a) and probability of failure (b) 

from SS/SPT method calculated at 8 sec intervals 
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Table 1a. Details of   from SS/SPT method calculated at 2 sec intervals 

Time 

(sec) 

SS/SPT  
MCS 

Run 1 Run 2 Run 3 Run 4 Mean C.O.V. 

2 6.93E-04 7.04E-04 8.47E-04 8.84E-04 7.82E-04 0.124953 8.38E-04 

4 8.24E-04 1.20E-03 1.02E-03 9.51E-04 1.00E-03 0.158611 9.12E-04 

6 7.83E-04 4.62E-04 9.77E-04 7.33E-04 7.39E-04 0.287182 8.93E-04 

8 9.38E-04 6.69E-04 7.49E-04 7.56E-04 7.78E-04 0.146443 8.79E-04 

10 1.06E-03 9.83E-04 1.15E-03 5.93E-04 9.48E-04 0.260010 9.24E-04 

12 9.23E-04 1.25E-03 7.96E-04 7.56E-04 9.31E-04 0.240193 8.53E-04 

14 8.47E-04 8.98E-04 1.50E-03 8.39E-04 1.02E-03 0.315475 8.77E-04 

… … … … … … … … 

338 6.30E-04 5.12E-04 4.45E-04 9.05E-04 6.23E-04 0.325363 5.10E-04 

340 5.99E-04 2.88E-04 5.33E-04 4.83E-04 4.76E-04 0.282164 4.73E-04 

342 4.37E-04 4.68E-04 8.69E-04 4.35E-04 5.52E-04 0.383182 4.87E-04 

344 2.78E-04 1.14E-04 3.31E-04 2.62E-04 2.46E-04 0.378173 4.94E-04 

346 4.30E-04 3.76E-04 4.81E-04 9.16E-04 5.51E-04 0.449211 4.69E-04 

348 7.50E-04 2.81E-04 4.18E-04 4.08E-04 4.64E-04 0.431984 4.81E-04 

350 5.53E-04 5.66E-04 8.22E-04 7.32E-04 6.68E-04 0.196244 5.05E-04 

 

Table 1b. Details of FP from SS/SPT method calculated at 2 sec intervals 

Time 

(sec) 

SS/SPT  
MCS 

Run 1 Run 2 Run 3 Run 4 Mean C.O.V. 

2 0.001385 0.001408 0.001694 0.001767 0.001564 0.124953 0.001676 

4 0.003031 0.003813 0.00374 0.003666 0.003563 0.100867 0.003497 

6 0.004592 0.004735 0.005686 0.005126 0.005035 0.097234 0.005276 

8 0.00646 0.006066 0.007176 0.00663 0.006583 0.069924 0.007024 

10 0.008575 0.008021 0.009461 0.007807 0.008466 0.087164 0.008859 

12 0.010405 0.010498 0.011038 0.009307 0.010312 0.070385 0.010549 

14 0.012081 0.012275 0.014012 0.010969 0.012334 0.101987 0.012285 

… … … … … … … … 

338 0.191062 0.204623 0.188228 0.205901 0.197454 0.046115 0.197184 

340 0.192032 0.205081 0.189094 0.206668 0.198219 0.045125 0.197944 

342 0.192738 0.205825 0.190503 0.207358 0.199106 0.043766 0.198725 

344 0.193187 0.206006 0.191038 0.207773 0.199501 0.043141 0.199516 

346 0.19388 0.206603 0.191816 0.209224 0.200381 0.043937 0.200267 

348 0.195089 0.207048 0.192491 0.209869 0.201124 0.042822 0.201037 

350 0.195979 0.207946 0.193819 0.211026 0.202193 0.042339 0.201844 

 

Table 2a. Details of  t  from SS/SPT method calculated at 4 sec intervals 

Time 

(sec) 

SS/SPT  
MCS 

Run 1 Run 2 Run 3 Run 4 Mean C.O.V. 

4 9.88E-04 7.89E-04 8.75E-04 1.03E-03 9.22E-04 0.119925 8.74E-04 

8 6.98E-04 1.04E-03 9.21E-04 7.50E-04 8.52E-04 0.185275 8.85E-04 

12 6.85E-04 1.05E-03 5.91E-04 7.01E-04 7.56E-04 0.263440 8.87E-04 

16 9.68E-04 8.36E-04 8.21E-04 1.02E-03 9.10E-04 0.106454 8.51E-04 

20 6.34E-04 8.40E-04 5.01E-04 6.70E-04 6.61E-04 0.210439 8.92E-04 

24 1.22E-03 6.63E-04 9.89E-04 9.58E-04 9.58E-04 0.240326 8.52E-04 

28 9.44E-04 6.44E-04 7.14E-04 8.43E-04 7.86E-04 0.169840 8.39E-04 

… … … … … … … … 

328 4.48E-04 5.90E-04 7.23E-04 5.65E-04 5.82E-04 0.194335 4.83E-04 

332 5.62E-04 5.57E-04 3.18E-04 4.26E-04 4.66E-04 0.250755 5.04E-04 

336 4.58E-04 4.88E-04 8.60E-04 4.30E-04 5.59E-04 0.361246 5.13E-04 

340 5.66E-04 4.66E-04 4.73E-04 4.44E-04 4.87E-04 0.110792 4.91E-04 

344 3.39E-04 7.74E-04 3.30E-04 3.79E-04 4.55E-04 0.468231 4.90E-04 

348 6.32E-04 6.91E-04 3.00E-04 4.54E-04 5.19E-04 0.341906 4.75E-04 

352 2.79E-04 3.80E-04 4.44E-04 5.41E-04 4.11E-04 0.267505 5.41E-04 
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Table 2b. Details of FP  from SS/SPT method calculated at 4 sec intervals 

Time 

(sec) 

SS/SPT  
MCS 

Run 1 Run 2 Run 3 Run 4 Mean C.O.V. 

4 0.003953 0.003157 0.003502 0.004134 7.82E-04 0.119925 0.003497 

8 0.006734 0.007309 0.007173 0.00712 1.00E-03 0.034798 0.007024 

12 0.009457 0.011459 0.00952 0.009904 7.39E-04 0.092894 0.010549 

16 0.013292 0.014765 0.012772 0.013931 7.78E-04 0.062751 0.013917 

20 0.015796 0.018073 0.014752 0.016575 9.48E-04 0.085815 0.017437 

24 0.020617 0.020676 0.018651 0.020342 9.31E-04 0.047741 0.020785 

28 0.024316 0.023199 0.021455 0.023644 1.02E-03 0.052766 0.024072 

… … … … … … … … 

328 0.199072 0.200064 0.198854 0.191648 6.23E-04 0.019640 0.193087 

332 0.200872 0.201847 0.199874 0.193026 4.76E-04 0.020115 0.194714 

336 0.202335 0.203406 0.202626 0.194415 5.52E-04 0.020983 0.196365 

340 0.20414 0.20489 0.204133 0.195845 2.46E-04 0.021192 0.197944 

344 0.205219 0.207351 0.205185 0.197063 5.51E-04 0.022297 0.199516 

348 0.20723 0.209541 0.206139 0.19852 4.64E-04 0.023247 0.201037 

352 0.208115 0.210742 0.20755 0.200253 6.68E-04 0.021751 0.202766 

 

Table 3a. Details of  t  from SS/SPT method calculated at 8 sec intervals 

Time 

(sec) 

SS/SPT  
MCS 

Run 1 Run 2 Run 3 Run 4 Mean C.O.V. 

8 8.14E-04 9.55E-04 7.70E-04 6.62E-04 8.00E-04 0.151619 8.78E-04 

16 9.61E-04 8.30E-04 8.92E-04 8.35E-04 8.79E-04 0.069234 8.68E-04 

24 6.45E-04 9.96E-04 9.61E-04 1.02E-03 9.05E-04 0.193195 8.71E-04 

32 9.09E-04 7.73E-04 6.86E-04 5.98E-04 7.42E-04 0.178653 8.35E-04 

40 8.25E-04 6.81E-04 1.05E-03 7.74E-04 8.33E-04 0.188349 8.51E-04 

48 9.20E-04 8.44E-04 9.98E-04 7.25E-04 8.72E-04 0.133392 8.05E-04 

56 1.14E-03 7.31E-04 8.13E-04 7.98E-04 8.70E-04 0.207804 7.97E-04 

… … … … … … … … 

304 4.09E-04 4.38E-04 7.67E-04 6.22E-04 5.59E-04 0.091557 5.28E-04 

312 5.39E-04 5.21E-04 6.71E-04 3.39E-04 5.17E-04 0.300373 4.93E-04 

320 4.43E-04 5.03E-04 4.66E-04 3.90E-04 4.51E-04 0.263403 4.86E-04 

328 4.28E-04 3.52E-04 3.38E-04 7.57E-04 4.69E-04 0.104947 5.08E-04 

336 3.25E-04 2.65E-04 5.42E-04 4.32E-04 3.91E-04 0.418887 4.90E-04 

344 5.83E-04 3.97E-04 4.21E-04 5.17E-04 4.79E-04 0.311981 5.08E-04 

352 4.09E-04 4.38E-04 7.67E-04 6.22E-04 5.59E-04 0.179697 5.28E-04 

 

Table 3b. Details of FP  from SS/SPT method calculated at 8 sec intervals 

Time 

(sec) 

SS/SPT 
MCS 

Run 1 Run 2 Run 3 Run 4 Mean C.O.V. 

8 0.00652 0.00764 0.00616 0.00529 0.006402 0.151619 0.007024 

16 0.01415 0.01423 0.01325 0.01194 0.013393 0.079600 0.013917 

24 0.01924 0.02208 0.02084 0.01998 0.020535 0.059432 0.020785 

32 0.02637 0.02813 0.02621 0.02467 0.026347 0.053640 0.027326 

40 0.03280 0.03343 0.03439 0.03071 0.032834 0.047451 0.033949 

48 0.03992 0.03995 0.04211 0.03634 0.03958 0.060412 0.040174 

56 0.04864 0.04557 0.04834 0.04249 0.04626 0.061983 0.046292 

… … … … … … … … 

304 0.18609 0.17862 0.18231 0.17817 0.181296 0.020390 0.183273 

312 0.18875 0.18150 0.18733 0.18226 0.184959 0.019571 0.186726 

320 0.19225 0.18491 0.19169 0.18448 0.188331 0.022360 0.189936 

328 0.19511 0.18819 0.19470 0.18702 0.191256 0.022200 0.193087 

336 0.19787 0.19048 0.19688 0.19195 0.194292 0.018684 0.196365 

344 0.19995 0.19219 0.20036 0.19474 0.196812 0.020341 0.199516 

352 0.20368 0.19476 0.20306 0.19807 0.199891 0.021240 0.202766 
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5. SUMMARY, CONCLUSIONS AND FUTURE 

WORK 

We presented an improved subset simulation with 

splitting approach to calculate the time-dependent 

probability of failure for dynamic systems with uncertain 

parameters subjected to stochastic excitation. The method 

partitions the high dimensional random process of the 

response into a series of correlated, short duration, low 

dimensional random processes. Subset simulation reduces 

the computational cost by introducing appropriate 

intermediate failure sub-domains to express the low 

failure probability as a product of larger conditional 

failure probabilities. Splitting provides an efficient 

sampling scheme to estimate the conditional probabilities. 

The proposed subset simulation with splitting not only 

estimates the time-dependent probability of failure at a 

given time but also estimates the failure rate and 

cumulative distribution function up to that time with 

approximately the same cost. We used the vibratory 

response of a vehicle over a stochastic terrain to 

demonstrate the accuracy and efficiency of the proposed 

approach. 

In future work, we plan to enhance the developed 

method by using splitting not only in the threshold 

direction but also in the time direction. 

 

ACKNOWLEDGMENT 

We would like to acknowledge the technical and 

financial support of the Automotive Research Center 

(ARC) in accordance with Cooperative Agreement 

W56HZV-04-2-0001 U.S. Army Tank Automotive 

Research, Development and Engineering Center 

(TARDEC)  

 

REFERENCES 

1. Savage, G. J., and Son, Y. K., “Dependability-Based 

Design Optimization of Degrading Engineering Systems,” 

ASME Journal of Mechanical Design, 131(1), 011002 (10 

pages), 2009. 

2. Ascher, H., and Feingold, H., “Repairable Systems 

Reliability”, Marcel Dekker, New York, N.Y., 1984. 

3. Singh, A., Mourelatos, Z. P., and Li, J., “Design for 

Lifecycle Cost using Time-dependent Reliability,” ASME 

Journal of Mechanical Design, 132(9), 091008 (11 

pages), 2010. Also, Proceedings of ASME 2009 Design 

Engineering Technical Conferences, Paper DETC2009-

86587/DAC-29, San Diego, CA, August 2009. 

4. Son, Y. K., Chang, S. W., and Savage, G. J., 

“Economic-based Design of Engineering Systems with 

Degrading Components Using Probabilistic Loss of 

Quality,” Journal of Mechanical Science and Technology, 

21(2), 225-234, 2007. 

5. Singh, A., Mourelatos, Z. P., and Li, J., “Design for 

Lifecycle Cost and Preventive Maintenance Using Time-

Dependent Reliability,” Advanced Materials Research, 

Vols. 118-120, 10-16, 2010. 

6. Andrieu-Renaud, C., Sudret, B., and Lemaire, M., 

“The PHI2 Method: A Way to Compute Time-Variant 

Reliability”, Reliability Engineering and Safety System, 

84(1), 75-86, 2004. 

7. Hagen, O., and Tvedt, L., “Vector Process Out-

Crossing as Parallel System Sensitivity Measure,” ASCE 

Journal of Engineering Mechanics, 121(10), 2201-2210, 

1991. 

8. Rice, S. O., “Mathematical Analysis of Random 

Noise,” Bell Syst Tech J, 23, 282–332, 1954. [Re-

published in: Wax N, editor. Selected Papers on Noise 

and Stochastic Processes, New York, Dover, 1954]. 

9. Rackwitz, R., “Computational Techniques in 

Stationary and Non-Stationary Load Combination – A 

Review and Some Extensions,” Journal of Structural 

Engineering, 25(1), 1-20, 1998. 

10.  Schueller, G. I., “A State-of-the-art Report on 

Computational Stochastic Mechanics,” Probabilistic 

Engineering Mechanics, 12(4), 197-321, 1997. 

 

11.  Engelung, S., Rackwitz, R., and Lange, C., 

“Approximations of First Passage Times for 

Differentiable Processes Based on Higher Order 

Threshold Crossings,” Probabilistic Engineering 

Mechanics, 10(1), 53-60, 1995. 

 

12.   Sudret, B., “Analytical Derivation of the Outcrossing 

Rate in Time-variant Reliability Problems,” Structure and 

Infrastructure Engineering, 4(5), 356-362, 2008. 

 

13.  Zhang, J., and Du, X., “Time-dependent Reliability 

Analysis for Function Generator Mechanisms,” ASME 

Journal of Mechanical Design, 133(3), 031005 (9 pages), 

2011. 

 

14.    Shinozuka, M., “Probability of Failure under 

Random Loading,” ASCE Journal of Engineering 

Mechanics, 90, 147-171, 1964. 

 

15.  Son, Y. K., and Savage, G. J., “Set Theoretic 

Formulation of Performance Reliability of Multiple 

Response Time-Variant Systems due to Degradations in 

System Components,” Quality and Reliability 

Engineering International, 23(2), 171-188, 2007. 

 

16.  Singh, A., and Mourelatos, Z. P., “On the Time-

dependent Reliability of Non-Monotonic, Non-Repairable 

Systems,” SAE International Journal of Materials and 

Manufacturing, 3(1), 425-444, 2010. 

 

17.  Hu, Z., and Du, X., “Time-dependent Reliability 

Analysis by a Sampling Approach to Extreme Values of 



 
17 

Stochastic Processes,” Proceedings of ASME 2012 Design 

Engineering Technical Conferences, Paper DETC2012-

70132, Chicago, IL, 2012. 

 

18.  Hu, Z., Li, H., Du, X., and Chandrashekhara, K., 

“Simulation-based Time-dependent Reliability Analysis 

for Composite Hydrokinetic Turbine Blades,” Structural 

and Multidisciplinary Optimization, DOI 

10.1007/s00158-012-0839-8, 2012. 

 

19.  Li, J., and Mourelatos, Z. P., “Time-Dependent 

Reliability Estimation for Dynamic Problems using a 

Niching Genetic Algorithm,” ASME Journal of 

Mechanical Design, 131(7), 2009. 

 

20.  Hu, Z., and Du, X., “Reliability Analysis for 

Hydrokinetic Turbine Blades,” Renewable Energy, 48, 

251-262, 2012. 

 

21.  Madsen, P. H., and Krenk, S., “An Integral Equation 

Method for the First Passage Problem in Random 

Vibration,” Journal of Applied Mechanics, 51, 674-679, 

1984. 

 

22.  Melchers, R. E., “Importance Sampling in Structural 

Systems,” Structural Safety, 6, 3-10, 1989. 

 

23.  Au, S. K., and Beck, J. L., “A New Adaptive 

Importance Sampling Scheme,” Structural Safety, 21, 

135-158, 1999. 

 

24.  A. Singh and Z.P. Mourelatos, “Time-Dependent 

Reliability Estimation for Dynamic Systems Using a 

Random Process Approach,” SAE International Journal 

of Materials & Manufacturing, 3(1), 339-355, 2010. 

 

25.  A. Singh, Z.P. Mourelatos and E. Nikolaidis, “Time-

Dependent Reliability of Random Dynamic Systems 

using Time-Series Modeling and Importance Sampling,” 

SAE International Journal of Materials & Manufacturing, 

4(1), 929-946, 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26.  Au, S. K., and Beck, J. L., “Estimation of Small 

Failure Probability in High Dimensions Simulation,” 

Probabilistic Engineering Mechanics, 16, 263-277, 2001. 

 

27. Au, S. K., and Beck, J. L., “Subset Simulation and its 

Application to Seismic Risk Based on Dynamic 

Analysis,” Journal of Engineering Mechanics, 129, 901-

917, 2003. 

 

28.  Norouzi, M., and Nikolaidis, E., “Efficient Random 

Vibration Analysis Using Markov Chain Monte Carlo 

Simulation,” SAE International Journal of Materials & 

Manufacturing, 5(1), 77-86, 2012. 

 

29.  Beck, J. L., and Au, S. K., “Bayesian Updating of 

Structural Models and Reliability Using Markov Chain 

Monte Carlo Simulation,” Journal of Engineering 

Mechanics, 128(4), 380-391, 2002. 

 

30.  Ching, J., Beck, J. L., and Au, S. K., “Hybrid Subset 

Simulation Method for Reliability Estimation of Dynamic 

Systems Subject to Stochastic Excitation,” Structural 

Safety, 20(3), 199-214, 2005. 

 

31.  Ching, J., Beck, J. L., and Au, S. K., “Reliability 

Estimation for Dynamic Systems Subject to Stochastic 

Excitation Using Subset Simulation with Splitting,” 

Computer Methods in Applied Mechanics and 

Engineering, 194, 1557-1579, 2005. 

 

32.  Morio, J., Pastel, R., and Gland, F., “An Overview of 

Importance Splitting for Rare Event Simulation,” 

European Journal of Physics, 31(5), 1295-1303, 2010. 

 

33.  Rao, S. S., Mechanical Vibrations, 5
th

 edition, 

Prentice Hall, 2011. 

34. Ho, S., and Xie, M., “The Use of ARIMA Models for 

Reliability Forecasting and Analysis”, Computers in 

Engineering, 35(1-2), 213-216, 1998. 

 

35.  Ruppert, D., Statistics in Finance, Springer-Verlag, 

New York, 2004. 

 


